7 research outputs found

    Potentialfinder - Fostering Network Innovation by Connecting Data Owners Using Scaled Business-Relevant Pattern Recognition and Clustering

    Get PDF
    The advancement in collection, computing and storage technologies has led to an exponential growth of available data in multiple disciplines. However, the human capacity of analyzing this data does not grow at the same rate, leaving a vast amount of potential disparate, invisible and unused. We want to enhance the capability of humans to automatically find relevant patterns in data to leverage potential in this increasing sea of data. We present an innovation network creation framework and Python library that detects exponential growth patterns from publicly available tabular data. It works as a magnifying glass to reveal the most relevant parts of the data and the processes represented by it. The extracted exponential patterns can be useful for topic or disease detection as well as for organisations such as venture capital and consulting firms to improve investment decisions. Additionally, startups and innovation units in corporates can leverage these information to base their business models on insights into sectors, markets or customer segments with exponential growth. To foster the innovation based on the revealed patterns, we connect the respective data owners that uploaded similar patterns. This paper proposes a framework for networked innovation creation including a) an algorithm to automatically detect exponential, b) approaches to scale its application to public tabular data in different sizes and formats, c) a similarity network connecting the found patterns to innovation networks, d) a clustering to group the data owners and enable co- and crowd innovation. We run experiments on large scale data for all steps to provide evidence for cost-efficiency, scalability and feasibility of the contributions

    Ontologies Applied in Clinical Decision Support System Rules:Systematic Review

    Get PDF
    BackgroundClinical decision support systems (CDSSs) are important for the quality and safety of health care delivery. Although CDSS rules guide CDSS behavior, they are not routinely shared and reused. ObjectiveOntologies have the potential to promote the reuse of CDSS rules. Therefore, we systematically screened the literature to elaborate on the current status of ontologies applied in CDSS rules, such as rule management, which uses captured CDSS rule usage data and user feedback data to tailor CDSS services to be more accurate, and maintenance, which updates CDSS rules. Through this systematic literature review, we aim to identify the frontiers of ontologies used in CDSS rules. MethodsThe literature search was focused on the intersection of ontologies; clinical decision support; and rules in PubMed, the Association for Computing Machinery (ACM) Digital Library, and the Nursing & Allied Health Database. Grounded theory and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 guidelines were followed. One author initiated the screening and literature review, while 2 authors validated the processes and results independently. The inclusion and exclusion criteria were developed and refined iteratively. ResultsCDSSs were primarily used to manage chronic conditions, alerts for medication prescriptions, reminders for immunizations and preventive services, diagnoses, and treatment recommendations among 81 included publications. The CDSS rules were presented in Semantic Web Rule Language, Jess, or Jena formats. Despite the fact that ontologies have been used to provide medical knowledge, CDSS rules, and terminologies, they have not been used in CDSS rule management or to facilitate the reuse of CDSS rules. ConclusionsOntologies have been used to organize and represent medical knowledge, controlled vocabularies, and the content of CDSS rules. So far, there has been little reuse of CDSS rules. More work is needed to improve the reusability and interoperability of CDSS rules. This review identified and described the ontologies that, despite their limitations, enable Semantic Web technologies and their applications in CDSS rules

    A Systematic Approach to Configuring MetaMap for Optimal Performance

    Get PDF
    Background  MetaMap is a valuable tool for processing biomedical texts to identify concepts. Although MetaMap is highly configurative, configuration decisions are not straightforward. Objective  To develop a systematic, data-driven methodology for configuring MetaMap for optimal performance. Methods  MetaMap, the word2vec model, and the phrase model were used to build a pipeline. For unsupervised training, the phrase and word2vec models used abstracts related to clinical decision support as input. During testing, MetaMap was configured with the default option, one behavior option, and two behavior options. For each configuration, cosine and soft cosine similarity scores between identified entities and gold-standard terms were computed for 40 annotated abstracts (422 sentences). The similarity scores were used to calculate and compare the overall percentages of exact matches, similar matches, and missing gold-standard terms among the abstracts for each configuration. The results were manually spot-checked. The precision, recall, and F-measure ( β =1) were calculated. Results  The percentages of exact matches and missing gold-standard terms were 0.6–0.79 and 0.09–0.3 for one behavior option, and 0.56–0.8 and 0.09–0.3 for two behavior options, respectively. The percentages of exact matches and missing terms for soft cosine similarity scores exceeded those for cosine similarity scores. The average precision, recall, and F-measure were 0.59, 0.82, and 0.68 for exact matches, and 1.00, 0.53, and 0.69 for missing terms, respectively. Conclusion  We demonstrated a systematic approach that provides objective and accurate evidence guiding MetaMap configurations for optimizing performance. Combining objective evidence and the current practice of using principles, experience, and intuitions outperforms a single strategy in MetaMap configurations. Our methodology, reference codes, measurements, results, and workflow are valuable references for optimizing and configuring MetaMap

    Interpretable machine learning predicts cardiac resynchronization therapy responses from personalized biochemical and biomechanical features

    No full text
    Abstract Background Cardiac Resynchronization Therapy (CRT) is a widely used, device-based therapy for patients with left ventricle (LV) failure. Unfortunately, many patients do not benefit from CRT, so there is potential value in identifying this group of non-responders before CRT implementation. Past studies suggest that predicting CRT response will require diverse variables, including demographic, biomarker, and LV function data. Accordingly, the objective of this study was to integrate diverse variable types into a machine learning algorithm for predicting individual patient responses to CRT. Methods We built an ensemble classification algorithm using previously acquired data from the SMART-AV CRT clinical trial (n = 794 patients). We used five-fold stratified cross-validation on 80% of the patients (n = 635) to train the model with variables collected at 0 months (before initiating CRT), and the remaining 20% of the patients (n = 159) were used as a hold-out test set for model validation. To improve model interpretability, we quantified feature importance values using SHapley Additive exPlanations (SHAP) analysis and used Local Interpretable Model-agnostic Explanations (LIME) to explain patient-specific predictions. Results Our classification algorithm incorporated 26 patient demographic and medical history variables, 12 biomarker variables, and 18 LV functional variables, which yielded correct prediction of CRT response in 71% of patients. Additional patient stratification to identify the subgroups with the highest or lowest likelihood of response showed 96% accuracy with 22 correct predictions out of 23 patients in the highest and lowest responder groups. Conclusion Computationally integrating general patient characteristics, comorbidities, therapy history, circulating biomarkers, and LV function data available before CRT intervention can improve the prediction of individual patient responses
    corecore